Ted Barnes
Physics Div. ORNL
Dept. of Physics, U.Tenn.

PD Workshop Fermilab, 6-9 Oct. 2004

WA102 and

Meson Spectroscopy

It may be relevant to the PD

... a short reminder.

Problem:

We expect various types of color singlet mesons;

```
|qq> + ... quarkonia,
```

|qqg> + ... hybrids

|gg> +... glueballs

Assuming there isn't large mixing, how can we distinguish these different types of states?

One possibility was suggested by WA102.

It also implies something interesting about the pomeron.

Quarkonia

Approx. status, light (u,d,s) qq spectrum to ca. 2.1 GeV.

Well known to ca. 1.5 GeV, poorly known above (except for larger-J).

n.b. ss is poorly known generally... an argument for K p

Several recent candidates, e.g. $a_1(1700)$, $a_2(1750)$.

Strong decays give M, G, J^{PC} of qq candidates.

<u>aa mesons</u>

quantum

numbers

Parity
$$P_{qq} = (-1)^{(L+1)}$$
 C-parity $C_{qq} = (-1)^{(L+S)}$

The resulting qq NL states $N^{2S+1}L_{J}$ have $J^{PC} =$

1S:
$${}^{3}S_{1} \ 1^{--}$$
; ${}^{1}S_{0} \ 0^{-+}$ 2S: $2{}^{3}S_{1} \ 1^{--}$; $2{}^{1}S_{0} \ 0^{-+}$...

1P: ${}^{3}P_{2} \ 2^{++}$; ${}^{3}P_{1} \ 1^{++}$; ${}^{3}P_{0} \ 0^{++}$; ${}^{1}P_{1} \ 1^{+-}$ 2P ...

1D: ${}^{3}D_{3} \ 3^{--}$; ${}^{3}D_{2} \ 2^{--}$; ${}^{3}D_{1} \ 1^{--}$; ${}^{1}D_{2} \ 2^{-+}$ 2D ...

JPC forbidden to qq are called

J^{PC}-exotic quantum numbers:

Plausible JPC-exotic candidates =

hybrids, glueballs (high mass), maybe multiquarks (fall-apart decays).

Glueballs

Theor. masses (LGT)

The glueball spectrum from an anisotropic lattice study

Colin Morningstar, Mike Peardon Phys. Rev. D60 (1999) 034509

The spectrum of glueballs below 4 GeV in the SU(3) pure-gauge theory is investigated using Monte Carlo simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm.

Glueball discovery? Crystal Barrel expt. (LEAR@CERN, ca. 1995)

$$p\underline{p} \rightarrow \pi^0 \pi^0 \pi^0$$

Evidence for a scalar resonance, $f_0(1500) \rightarrow \pi^0 \pi^0$

n.b. Some prefer a different scalar, $f_0(1710) \rightarrow \eta\eta$, KK.

PROBLEM: Neither f_0 decays in a naïve glueball flavor-symmetric way to $\pi\pi$, $\eta\eta$, KK. $q\underline{q}$ <-> G mixing?

$\xi(2230) = G/ss$ brou ha ha

FIG. 1. $K\overline{K}$ invariant-mass distribution for the full sample of 5.3×10^6 J/ψ for (a) the K^+K^- final state and for (b) the $K_2^0K_3^0$ final state, where the four-pion background is shown crosshatched. Fits to the 1.9-2.6-GeV/ c^2 mass region are displayed in the insets.

Tensor glueball candidate?

Originally reported by Mark III at SLAC; R.M.Baltrusaitis et al., PRL56, 107 (1986).

Not seen by DM2 with better statistics. Claimed by BES (?) but status unclear.

Hybrids:

New band of meson excitations predicted, starting at ca. 1.9 GeV.

Flavor nonets $x \ 8 J^{PC} = 72 \text{ states}.$

Includes 0⁺⁻, 1⁻⁺ and 2⁺⁻ J^{PC}-exotics.

Expt Hybrid mesons? The current best signal for a J^{PC} = 1⁻⁺ exotic. (Can't be qq.) E852@BNL, ca. 1996

$$\pi^{-}p \rightarrow (\pi^{-}\eta') p$$

(Current best of several reactions and claimed exotics.)

Follow up expts planned at CEBAF; "HallD" or GlueX. (photoprod.)

		A	B,C	L	Γ	A	B, C	L	Γ	A	B,C	L	r
	π (2000)	2	$f_2(1270)\pi$	S	40	1*-	$a_2(1320)\pi$	P	175	1	$f_1(1285)\pi$	S	40
				D	20		$a_1(1260)\pi$	P	90			D	20
	hybrid:		$b_1(1235)\pi$	D	40		$h_4(1170)\pi$	P	175		$b_1(1235)\pi$	S	150
			$a_2(1320)\eta$	S	~ 40		$b_1(1235)\eta$	P	150			D	20
	DI MOGC		$K_2^*(1430)K$	S	~ 30	į į	$K_2^*(1430)K$	P	60		$a_1(1260)\eta$	S	50
		2+	$a_2(1320)\pi$	P	200		$K_1(1270)K$	P	250		$K_1(1270)K$	S	20
İ			$a_1(1260)\pi$	P	70		$K_0^*(1430)K$	P	70		$K_1(1400)K$	S	~ 125
			$h_1(1170)\pi$	P	90	1++	$f_2(1270)\pi$	P	175	$0 \rightarrow$	$f_2(1270)\pi$	D	20
			$b_1(1235)\eta$	P	~ 15	Ī	$f_1(1285)\pi$	P	150		$f_0(1300)\pi$	S	~ 150
F.E.Close and P.R.Page, NPB443, 233 (1995).		0+-	$a_4(1260)\pi$	P	700		$f_0(1300)\pi$	P	~ 20		$K_0^*(1430)K$	S	~ 200
			$h_1(1170)\pi$	P	125		$a_2(1320)\eta$	P	50	1 ***	$a_2(1320)\pi$	D	50
			$b_1(1235)\eta$	P	80	Ī	$a_1(1260)\eta$	P	90		$a_1(1260)\pi$	S	150
			$K_1(1270)K$	P	600		$K_2^*(1430)K$	P	~ 20			D	20
			$K_1(1400)K$	P	150		$K_{i}(1270)K$	P	40		$K_1(1270)K$	S	40
							$K_1(1400)K$	P	~ 20		$K_1(1400)K$	S	~ 60

Close and Page: some notably narrow nonexotic hybrids in the f-t model

Table 4: As in table 3 but for initial hybrid $\sqrt{\frac{1}{2}}(u\bar{u}+d\bar{d})$.

A	B,C	L	Γ	A	B, C	L	Γ	A	B,C	L	Г
2-+	$a_2(1320)\pi$	S	125	2+-	$b_1(1235)\pi$	P	250	1++	$a_2(1320)\pi$	P	500
		D	60		$h_1(1170)\eta$	P	30		$a_1(1260)\pi$	P	450
Ī	$f_2(1270)\eta$	S	~ 50	0+-	$b_1(1235)\pi$	P	300		$f_2(1270)\eta$	P	70
	$K_2^*(1430)K$	S	~ 30		$h_1(1170)\eta$	P	90		$f_1(1285)\eta$	P	60
1.4~	$b_1(1235)\pi$	P	500	Ì	$K_1(1270)K$	P	600		$K_2^*(1430)K$	P	~ 20
	$h_1(1170)\eta$	P	175		$K_1(1400)K$	P	150		$K_1(1270)K$	P	40
	$K_2^*(1430)K$	P	60	1	$a_1(1260)\pi$	S	100		$K_1(1400)K$	P	~ 20
	$K_1(1270)K$	P	250			D	70	0-	$a_2(1320)\pi$	D	60
	$K_0^*(1430)K$	P	70		$f_i(1285)\eta$	S	50		$f_0(1300)\eta$	S	~ 200
1	$K_1(1270)K$	S	40		$K_1(1270)K$	S	20		$K_0^*(1430)K$	S	~ 200
	$K_1(1400)K$	S	60		$K_1(1400)K$	S	~ 125				

 $\begin{array}{c} \omega(2000) \\ \text{hybrid} \end{array}$

WA102

Central meson production CERN SPS, $p_{beam} = 450 \text{ GeV}$

ca. 10 papers by WA102 Collaboration and by F.E.Close and A.Kirk

AK and FEC, hep-ph/9701222, PLB397, 333 (1997) (most cited).

WA102

Central meson production

G and qq candidates were strongly distinguished by cuts on exchanged $|p_1 - p_2|_{cm}$, " dP_T ". and by differential production cross dependence on an azimuthal angle Φ .

Quantum numbers of the "pomeron"? It acts like 1 exchange rather than 0.

 $^{^{1}}$ dP_{T} is the difference in the transverse momentum vectors of the two exchange Pomerons and ϕ is the angle between the transverse momentum vectors, p_{T} , of the two outgoing protons.

Figure 3: The 4π mass spectra (i) With $dP_T > 0.5$ GeV exhibiting a clear $f_1(1285)$; (ii) $0.2 < dP_T < 0.5$ GeV (iii) $dP_T < 0.2$ GeV where the $f_1(1285)$ has disappeared while the $f_0(1500)$ is seen more clearly.

$\pi^{\dagger}\pi^{-}\pi^{\dagger}\pi^{-}$

F.E.Close and A.Kirk, hep-ph/9701222 PLB397, 333 (1997).

WA102...

D.Barberis et al. hep-ex/0001017 PLB474, 423 (2000).

Central meson production... glueballs and hybrids?

 $f_0(1500) \rightarrow 4\pi$ Scalar glueball candidate

Dependence of the production cross section on the azimuthal angle Φ . (hep-ph/0001158)

References:

1. hep-ph/0106108

Title: Large Isospin mixing in phi radiative decay and the spatial size of the f0(980)- a0(980) meson

Authors: F.E. Close, A. Kirk Comments: 7 pages, Latex

Journal-ref: Phys.Lett. B515 (2001) 13-16

2. hep-ph/0103173

Title: Scalar Glueball-qqbar Mixing above 1 GeV and implications for Lattice QCD

Authors: F.E. Close, A. Kirk

Comments: 33 pages, Latex, 4 Figures Journal-ref: Eur.Phys.J. C21 (2001) 531-543

3. hep-ph/0008066

Title: Isospin breaking exposed in f0(980)- a0(980) mixing

Authors: F.E. Close, A. Kirk

Comments: 11 pages, Latex, 3 Figures Journal-ref: Phys.Lett. B489 (2000) 24-28

4. hep-ph/0004241

Title: The mixing of the f0(1370), f0(1500) and f0(1710) and the search for the scalar glueball

Authors: F.E. Close, A. Kirk

Comments: 15 pages, Latex, 2 Figures Journal-ref: Phys.Lett. B483 (2000) 345-352

5.hep-ph/0001158

Title: Dynamics of Glueball and qqbar production in the central region of pp collisions Authors: F.E. Close, A. Kirk, G. Schuler Comments: 12 pages, Latex, 4 Figures typographical error in equation (2) corrected Journal-ref: Phys.Lett. B477 (2000) 13-18

6.hep-ph/9706543

Title: Implications of the Glueball-qqbar filter on the 1++ nonet

Authors: Frank E. Close, Andrew Kirk Comments: 21 pages, Latex, 5 Figures Journal-ref: Z.Phys. C76 (1997) 469-474

7.hep-ph/9701222

Title: A Glueball- \$q\bar{q}\$ Filter in Central Hadron Production

Authors: Frank Close, Andrew Kirk

Comments: Latex file. 5 figs including 2 from WA102 CERN report "A kinematical selection of glueball candidates in central production"

Journal-ref: Phys.Lett. B397 (1997) 333-338